Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Mei-Mei Wu, Li-Yi Zhang, Yong-Hai Qin and Zhong-Ning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's
Republic of China
Correspondence e-mail: czn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.041$
$w R$ factor $=0.110$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(4,4'-Dimethyl-2,2'-bipyridine)(ethynylbenzene)(triphenylphosphine)platinum(II) hexafluoroantimonate

The reaction between the metal diphosphine $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2^{-}}\right.$ $(\mathrm{MeCN})]\left(\mathrm{SbF}_{6}\right)$ and the metal acetylide compound $\mathrm{Pt}(\mathrm{dmbpy})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}$ (dmbpy is $4,4^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine) gave the title compound, $\mathrm{Pt}(\mathrm{dmbpy})\left(\mathrm{C}_{2} \mathrm{Ph}\right) \cdot \mathrm{SbF}_{6}$ or $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]\left(\mathrm{SbF}_{6}\right)$. The Pt center is fourcoordinated and exhibits a distorted square-planar coordination geometry.

Comment

Transition metal acetylide complexes are of considerable interest because of their potential applications in many fields of materials chemistry, including luminescent materials and conducting polymers (Chan et al., 2001). We are interested in the design of photoluminescent heterometallic cluster complexes by self-assembly between two metal components, one with alkynyl ligands and the other with vacant coordination sites. Thus, the reaction between $\mathrm{Pt}(\mathrm{dmbpy})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}$, with two alkynyl ligands, and $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right]^{+}$, with a vacant coordination site, was expected to afford a $\mathrm{Pt}-\mathrm{Ag}$ heteronuclear species. However, the product isolated from the reaction was the title compound, (I). A perspective drawing of the complex with the atomic numbering scheme is depicted in Fig. 1 and selected geometric parameters are presented in Table 1.

(I)

The Pt atom is located in a distorted square-planar coordination geometry. The $\mathrm{Pt}-\mathrm{P}$ distance is 2.246 (2) \AA, which is slightly shorter than that observed in the complex $\mathrm{PtCuCl}-$ $\left(\mathrm{C}_{2} \mathrm{Bu}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ [2.300 (3) Å; Yamazaki \& Deeming, 1993]. The $\mathrm{Pt}-\mathrm{N}$ distances are 2.068 (6) and 2.094 (6) \AA, which are similar to those observed in the complex $\operatorname{Pt}(1,10$-phenanthroline $)\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2}$ (Hissler et al., 2000).

Experimental

The starting compounds $\operatorname{Pt}(\mathrm{dmbpy})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}$ (Chan et al., 2001) and $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right]\left(\mathrm{SbF}_{6}\right)$ were prepared according to literature procedures (Bachman \& Andretta, 1998). $\mathrm{Pt}(\mathrm{dmbpy})\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}$ and $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})\right]\left(\mathrm{SbF}_{6}\right)$ were reacted, in an equimolar ratio, in dichloromethane under anaerobic conditions for 24 h . The solvent was then reduced in vacuo. Well-shaped yellow crystals suitable for X-ray diffraction analysis were grown by slow diffusion of diethyl ether into the dichloromethane solution.

Received 11 March 2003

Accepted 25 March 2003 Online 31 March 2003

Figure 1
A view of the compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

Crystal data

$\begin{aligned} & {\left[\mathrm{Ptt}_{\left.\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]}^{\left(\mathrm{SbF}_{6}\right)}\right.} \end{aligned}$	$D_{x}=1.814 \mathrm{Mg} \mathrm{~m}^{-3}$ Mo $K \alpha$ radiation
$M_{r}=978.47$	Cell parameters from 4988
Monoclinic, $P 2_{1} / n$	reflections
$a=14.4131$ (4) A	$\theta=1.5-25.1^{\circ}$
$b=10.1848$ (2) \AA	$\mu=4.76 \mathrm{~mm}^{-1}$
$c=24.7099$ (7) \AA	$T=293$ (2) K
$\beta=98.915$ (1) ${ }^{\circ}$	Block, yellow
$V=3583.46$ (16) \AA^{3}	$0.50 \times 0.30 \times 0.25 \mathrm{~mm}$
$Z=4$	
Data collection	
Siemens SMART CCD	6291 independent reflections
diffractometer	4473 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-7 \rightarrow 17$
$T_{\text {min }}=0.194, T_{\text {max }}=0.304$	$k=-9 \rightarrow 12$
10524 measured reflections	$l=-29 \rightarrow 29$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.110$
$S=1.19$
6291 reflections
442 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0387 P)^{2}\right. \\
&+9.8193 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=1.04 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.61 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Pt}-\mathrm{C} 1$	$1.954(9)$	$\mathrm{Pt}-\mathrm{N} 2$	$2.094(6)$
$\mathrm{Pt}-\mathrm{N} 1$	$2.068(6)$	$\mathrm{Pt}-\mathrm{P}$	$2.246(2)$
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{N} 1$	$93.0(3)$	$\mathrm{C} 1-\mathrm{Pt}-\mathrm{P}$	$88.9(2)$
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{N} 2$	$171.2(3)$	$\mathrm{N} 1-\mathrm{Pt}-\mathrm{P}$	$175.58(18)$
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{N} 2$	$78.6(2)$	$\mathrm{N} 2-\mathrm{Pt}-\mathrm{P}$	$99.68(18)$

All H atoms were included in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 and $0.96 \AA$ (methyl). They were included in the refinement in riding-motion approximation, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ ($1.5 U_{\text {eq }}$ for methyl) of the carrier atom.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT and XPREP (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSF of China (No. 20171044).

References

Bachman, R. E. \& Andretta, D. F. (1998). Inorg. Chem. 21, 5657-5663.
Chan, S. C., Chan, M. C. W., Wang, Y., Che, C. M., Cheung, K. K. \& Zhu, N. (2001). Chem. Eur. J. 7, 4180-4190.

Hissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachicotte, R. J. \& Eisenberg, R. (2000). Inorg. Chem. 39, 447-457.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL. Versions 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yamazaki, S. \& Deeming, A. J. (1993). J. Chem. Soc. Dalton Trans. pp. 30513057.

